
MeshAnything V2: Artist-Created Mesh Generation
with Adjacent Mesh Tokenization

Yiwen Chen1,2 Yikai Wang3* Yihao Luo4 Zhengyi Wang2,3

Zilong Chen2,3 Jun Zhu2,3 Chi Zhang5* Guosheng Lin1*

1Nanyang Technological University 2Shengshu
3Tsinghua University 4Imperial College London 5Westlake University

https://buaacyw.github.io/meshanything-v2/

Abstract

Meshes are the de facto 3D representation in the indus-
try but are labor-intensive to produce. Recently, a line of
research has focused on autoregressively generating meshes.
This approach processes meshes into a sequence composed
of vertices and then generates them vertex by vertex, similar
to how a language model generates text. These methods have
achieved some success but still struggle to generate complex
meshes. One primary reason for this limitation is their in-
efficient tokenization methods. To address this issue, we
introduce MeshAnything V2, an advanced mesh generation
model designed to create Artist-Created Meshes that align
precisely with specified shapes. A key innovation behind
MeshAnything V2 is our novel Adjacent Mesh Tokenization
(AMT) method. Unlike traditional approaches that represent
each face using three vertices, AMT optimizes this by employ-
ing a single vertex wherever feasible, effectively reducing
the token sequence length by about half on average. This
not only streamlines the tokenization process but also results
in more compact and well-structured sequences, enhancing
the efficiency of mesh generation. With these improvements,
MeshAnything V2 effectively doubles the face limit compared
to previous models, delivering superior performance without
increasing computational costs. We will make our code and
models publicly available.

1. Introduction
Due to the controllable and compact advantages of meshes,
they serve as the predominant 3D representation in various
industries, including games, movies, and virtual reality. For
decades, the 3D industry has relied on human artists to man-
ually create meshes, a process that is both time-consuming

* Corresponding authors.

and labor-intensive.
To address this issue, very recently, a line of work [2,

4, 5, 15, 19, 27] has focused on automatically generating
Artist-Created Meshes (AMs) to replace manual labor. In-
spired by the success of large language models (LLMs),
these approaches treat AMs as sequences of faces and learn
to generate them with autoregressive transformers [23] in a
manner similar to LLMs. Unlike methods that produce dense
meshes in a reconstruction manner, these methods learn from
the distribution of meshes created by human artists, thereby
generating AMs that are efficient, beautiful, and can seam-
lessly replace manually created meshes.

Although these methods have achieved some success,
they still face significant challenges. One major limitation
is that current methods [2, 4, 5, 15, 19, 27] cannot generate
meshes with a large number of faces. A primary reason for
this constraint is the inadequacy of existing mesh tokeniza-
tion methods. These methods treat a mesh as a sequence of
faces, where each face consists of three vertices, and each
vertex typically requires three tokens to represent. Conse-
quently, each mesh is tokenized into a sequence nine times
the number of its faces, resulting in substantial computa-
tional and memory demands. Besides, the resulting token
sequence is highly redundant, which harms sequence learn-
ing and reduces performance.

Observing the above issues, we focus on the tokenization
method of mesh generation in this work, aiming to improve
the efficiency and quality of mesh generation. Extensive re-
search in language models has demonstrated the importance
of tokenization in sequence learning [10, 17, 29]. More-
over, unlike text, which inherently has a sequential structure,
meshes are graph-based structures with 3D characteristics.
For any given mesh, there are countless ways to represent it
as a 1D token sequence, making the influence of tokenization
methods even more pronounced for meshes. Therefore, we
emphasize that research on mesh tokenization methods is of
great importance.

1

ar
X

iv
:2

40
8.

02
55

5v
3 

 [
cs

.C
V

] 
 1

 D
ec

 2
02

4

https://buaacyw.github.io/meshanything-v2/


Point Cloud Point Cloud Point Cloud

Dense Mesh Dense Mesh

Dense Mesh Image

Text Condition: a carNeRF 3D GS

Dense Mesh Dense Mesh

Figure 1. Equipped with the newly proposed Adjacent Mesh Tokenization (AMT), MeshAnything V2 significantly surpasses
MeshAnything [5] in both performance and efficiency. MeshAnything V2 generates Artist-Created Meshes (AM) up to 1600 faces
aligned with given shapes. Combined with various 3D asset production pipelines, it efficiently achieves high-quality, highly controllable AM
generation.

The impact of mesh tokenization on autoregressive mesh
generation can be considered in two main aspects. The
first is efficiency: representing a mesh with shorter, more
compact token sequences leads to reduced context length,
thereby decreasing memory and computational complexity.
The second aspect is the regularity of the token sequence. A
shorter token sequence is not always better for mesh genera-

tion; the regularity and pattern consistency of the sequence
are crucial for effective sequence learning. Effective mesh
tokenization must balance both efficiency and regularity to
achieve high-quality, efficient mesh generation.

Considering the above, we introduce MeshAnything V2,
an advanced model for generating Artist-Created Meshes.
This model incorporate several key improvements to boost

2



both performance and efficiency. At the core of MeshAny-
thing V2 is our novel Adjacent Mesh Tokenization (AMT)
method. AMT optimizes the tokenization process by repre-
senting each face with a single vertex rather than the tradi-
tional three. As illustrated in Fig. 1 and Algo. 1, AMT en-
codes adjacent faces using just one additional vertex, largely
reducing the sequence length. When an adjacent face cannot
be identified, a special token ’&’ is introduced to indicate
this interruption, allowing the model to resume from an un-
encoded face.

In previous mesh generation works, users were unable to
control the number of faces generated by the model, often re-
sulting in meshes that did not meet application requirements.
To address this, we introduce a face count condition, allow-
ing users to specify an approximate number of faces, ensur-
ing that generated meshes align with desired specifications.
Additionally, to enhance the robustness of AMT during in-
ference, we incorporate Masking Invalid Predictions [15]
to prevent the model from producing invalid tokens, such
as generating another ’&’ token immediately after an ’&’
token.

Extensive experiments on the Objaverse [6] dataset
demonstrate that AMT can halve the sequence length on av-
erage. This reduction translates to nearly a fourfold decrease
in computational load and memory usage within the attention
block. Furthermore, AMT remains effective across various
mesh generation settings, including unconditional and con-
ditional approaches [19], even when using VQ-VAE [22].
Finally, with the integration of AMT, MeshAnything V2
doubles the maximum number of faces generated compared
to previous models, significantly boosting both performance
and efficiency.

In summary, our contributions are:

1. We introduce MeshAnything V2, a novel Artist-Created
Mesh Generation model. V2 doubles the maximum num-
ber of faces that can be generated while achieving signifi-
cantly better accuracy and efficiency.

2. The core of V2 is our newly proposed mesh tokenization
method, Adjacent Mesh Tokenization (AMT). Compared
to previous tokenization methods, AMT requires approx-
imately half the token sequence length to represent the
same mesh, thereby fundamentally reducing the compu-
tational burden of Artist-Created Mesh generation.

3. We conduct extensive experiments on various mesh tok-
enization methods to explore the essential properties re-
quired for effective mesh tokenization. Our experiments
demonstrate that AMT significantly improves the effi-
ciency and performance of mesh generation, and that the
token sequence produced by mesh tokenization methods
must balance compactness and regularity.

Algorithm 1: Adjacent Mesh Tokenization (AMT)
Input:M: a triangle mesh
Output: A token sequence Seq that representsM

1 Sort the vertices ofM in ascending order by their
coordinates;

2 Sort the faces ofM in ascending order by their
vertex indices;

3 Initialize an empty token sequence Seq;
4 Initialize a face list UnvisitedFaces as the faces of
M;

5 Remove the first face from UnvisitedFaces;
6 Append the three vertices of the removed face to

Seq;
7 Define a SpecialToken & to indicate break signal.
8 while UnvisitedFaces is not empty do
9 if the last token in Seq is & then

10 Remove the first face from
UnvisitedFaces;

11 Append the three vertices of the removed
face to Seq;

12 else
13 AdjacentV ertices← vertices adjacent to

both the last two vertices in Seq;
14 Filter out vertices from AdjacentV ertices

that form faces with the last two vertices in
Seq that are not in UnvisitedFaces;

15 if AdjacentV ertices is not empty then
16 Sort AdjacentV ertices in ascending

order by their coordinates;
17 Append the first vertex in

AdjacentV ertices to Seq;

18 else
19 Append & to Seq;

20 return Seq;

2. Related Works

2.1. Artist-Created Mesh Generation

Diverging from previous works that produce dense meshes,
recent works have focused on generating meshes created
by human artists, i.e., Artist-Created Meshes (AMs) [2, 4,
5, 15, 19, 27]. These methods process meshes into ordered
face sequences and learn to generate this sequence. [15]
first proposed using autoregressive transformers to sequen-
tially generate vertices and faces. [19] use VQ-VAE to learn
a mesh vocabulary and then learn this vocabulary with a
decoder-only transformer. [2] differ from other methods by
using a discrete diffusion model to generate AMs instead
of an autoregressive transformer. [4] propose directly using
the discretized coordinates of the vertex as the token index,

3



Previous Mesh Tokenization Methods

A B C

D

F

E

A B C

D

F

E

A B C

D

F

E

ABD

A B C

D

F

E

ABD BCE ABD BCE BDE ABD BCE BDE DEF

F1 F2

F3

F4

F1 F1 F1

F4 F4 F4

F3 F3
F2 F2 F2

F1 F1 F2 F1 F2 F1 F2 F3 F4
F3

F3

Adjacent Mesh Tokenization (AMT)

A B C

D

F

E

ABD
A B C

D

F

E

ABDE

F1

F3
F2 F1

F3
F2

F4 F4

F1 F1

F3

A B C

D

F

E

ABDEF

F1

F3
F2

F4

F1

F3

F4

A B C

D

F

E

F1

F3
F2

F4

ABDEF&BCE
F1

F3

F4

F2

Figure 2. Illustration of Adjacent Mesh Tokenization (AMT). Unlike previous methods that use three vertices to represent a face, AMT
uses a single vertex whenever possible. When this is impossible, AMT adds a special token & and restarts. Our experiments demonstrate that
AMT reduces the token sequence length by half on average. Its compact, and well-structured sequence representation enhances sequence
learning, thereby significantly improving both the efficiency and performance of mesh generation.

bypassing the need for VQ-VAE as in [19]. [27] use pivot
vertices as a coarse mesh representation and then generate
the complete mesh tokens. [5] generate AMs aligned with
given shapes, which can be integrated with various 3D asset
production methods to convert their results into AMs.

As shown in Fig. 2, all of these methods process meshes
into face sequences and use three vertices to represent a
single face, resulting in highly redundant representations.
Different from these methods, our newly proposed Adjacent
Mesh Tokenization (AMT) uses a single vertex to represent
a single face, providing a more compact and well-structured
mesh representation, thereby significantly improving the
efficiency and performance of mesh generation.

2.2. 3D Generation
In recent years, 3D generation has gradually become one of
the mainstream research directions in the field of 3D research.
This area focuses on generating diverse, high-quality 3D as-
sets for the 3D industry. Generative Adversarial Networks
(GANs) [1, 7, 28] produce synthetic 3D data by training
a generator and a discriminator network to distinguish be-

tween generated and real data. Very recently, a new line
of works [9, 11, 12, 18, 20, 21, 25, 26, 30] directly gener-
ate 3D assets in a feed-forward manner. [9] pioneer these
methods and use a transformer to directly regress the pa-
rameters of 3D models given conditions. Besides, applying
diffusion models [8] to directly generate 3D assets has also
been widely researched [2, 13, 14, 16, 31, 34]. [31] lead
the SOTA of current 3D generation methods by first gener-
ating high-quality 3D shapes with DiT and then producing
detailed textures with material diffusion models.

As mesh is a crucial component in 3D generation, Artist-
Created Mesh Generation [2, 4, 5, 15, 19, 27] is closely
related to 3D generation. However, it differs significantly
from previous 3D generation methods as it mainly focuses
on sequence learning, which is rarely seen in other 3D gen-
eration methods, to produce high-quality mesh topology.

3. Method

In this work, we introduce a novel mesh tokenization method,
named Adjacent Mesh Tokenization (AMT). Compared to

4



previous tokenization methods, AMT reduces the token se-
quence length by approximately half to represent the same
mesh, thereby significantly lowering the computational over-
head of mesh generation. AMT is detailed in Section 3.1.

Next, in Section 3.2, we integrate AMT into MeshAny-
thing [5] and introduce MeshAnything V2.

3.1. Adjacent Mesh Tokenization
In this section, we detail Adjacent Mesh Tokenization
(AMT), a novel tokenization method for Artist-Created Mesh
(AM) generation. Compared to previous methods, AMT pro-
cesses the mesh into a more compact and well-structured
token sequence by representing each face with a single ver-
tex whenever possible. For simplicity, we describe AMT
on triangle mesh. But it is worth noting that AMT can be
easily generalized to the generation of meshes with variable
polygons.

Tokenization is a crucial part of sequence learning, as it
processes various data formats, such as text, images, and
audio, into token sequences. The processed tokens are then
used as ground truth inputs for training the sequence model.
During inference, the sequence model generates a token
sequence that is subsequently detokenized into the target data
format. Therefore, tokenization plays a vital role in sequence
learning, determining the quality of the data sequence that
the sequence model learns from.

We first illustrate the tokenization methods used in previ-
ous methods [2, 4, 5, 15, 19, 27]. Although there are slight
differences in detail, the previous tokenization methods can
be unified as follows: Given a meshM, vertices are first
sorted in ascending order based on their z-y-x coordinates,
where z represents the vertical axis. Next, faces are ordered
by their lowest vertex index, then by the next lowest, and
so on. The mesh is then viewed as an ordered sequence of
faces:

M := (f1, f2, f3, . . . , fN ), (1)

where fi represents the i-th face in the mesh, and N is
the number of faces inM.

Then, each fi is represented as an ordered sequence of
three vertices v:

fi := (vi1, vi2, vi3), (2)

where vi1, vi2, and vi3 are the vertices that form the i-th face
fi in the mesh. It is worth noting that vi1, vi2, and vi3 have
already been sorted and have a fixed order.

Substituting Equation (2) into Equation (1) gives:

M := ((v11, v12, v13), . . . , (vN1, vN2, vN3)) = SeqV (3)

Due to the sorting, the resulting SeqV is unique and its
length is three times the number of faces in the mesh. It is
evident that SeqV contains a significant amount of redundant

information, as each vertex appears as many times as the
number of faces it belongs to.

To resolve this issue, we propose Adjacent Mesh To-
kenization (AMT) to obtain a more compact and well-
structured SeqV than previous method. Our key observation
is that the main redundancy of SeqV comes from represent-
ing each face with three vertices as in (2). This results in
vertices that have already been visited appearing redundantly
in SeqV . Therefore, AMT aims to represent each face using
only a single vertex whenever possible. As shown in Fig. 2
and Algo. 1, AMT efficiently encodes adjacent faces during
tokenization, using only one additional vertex. When no
adjacent face is available, as illustrated in the last step of
Fig. 2, AMT inserts a special token & into the sequence to
denote this event and restarts the process from a face that
has not yet been encoded. To detokenize, simply reverse the
tokenization algorithm as described in Algo. 1.

In the ideal case, where the special token ”&” is rarely
used, AMT can reduce the length of SeqV obtained by pre-
vious methods to nearly one-third. Of course, in extreme
cases, such as when each face in the mesh is completely
disconnected from others, AMT performs worse than pre-
vious methods. However, since the datasets [3, 6] used for
AM generation are created by human artists, the meshes
generally have well-structured topologies. Thus, the overall
performance of AMT is significantly better than previous
methods. As shown in Sec. 4.3, on the Objaverse test set,
AMT can reduce the length of SeqV by half on average.
Vertices Swap. Considering two faces f1 and f2:

f1 = (v1, v2, v3), f2 = (v1, v3, v4).

These two faces are connected by edge (v1, v3). As-
suming we first represent f1 as (v1, v2, v3), AMT will be
interrupted because f2 does not contain v2, even though f1
and f2 are actually adjacent. To solve this issue, we intro-
duce a special token $ to swap vertices. When the $ token
appears in front of a vertex, it indicates that the next face
will be formed by the first and the last vertex of the previ-
ous face, instead of the last two. For example, the token
sequence (v1, v2, v3, $, v4) implies the mesh consists of two
faces: (v1, v2, v3) and (v1, v3, v4), i.e. f1 and f2.

When swap is enabled, AMT can explore more adjacent
faces when searching for the next face. Specifically, in
line 13 of Algo. 1, AdjacentV ertices can be modified to
additionally include vertices adjacent to the last and third-to-
last vertices in Seq.

Although the swap operation introduces an additional
special token, it reduces the number of interruptions and
effectively shortens the token sequence. While adding a spe-
cial token may potentially increase the difficulty of sequence
learning, our experiments in Sec. 4.3 show that it has no
noticeable impact.

5



Discussion on Sorting in Mesh Tokenization. Both previ-
ous methods and AMT initially sort the vertices and faces
of the mesh. The primary goal is to process the mesh data
into a sequence with a fixed pattern, making it easier for the
learning of the sequence model. In AMT, to maintain this de-
sign, we consistently choose the face with the earlier index in
the sorted list whenever there are multiple choices. Besides,
thanks to this design, the token sequence processed by AMT
is unique for each mesh. Additionally, AMT prioritizes visit-
ing adjacent faces whenever possible. In contrast, previous
methods naively follow the sorted order, often resulting in
token sequences where spatially distant vertices are adjacent
in the sequence, potentially increasing sequence complex-
ity. As shown in Sec. 4.3, compared to previous methods,
AMT demonstrates significant advantages in both speed and
memory usage, as well as improved accuracy, proving that
the sequences generated by AMT are more compact and
well-structured.
Discussion on AMT and the use of VQ-VAE. After obtain-
ing SeqV , mesh generation methods then need to process it
into a token sequence for sequence learning. [19] propose
to train a VQ-VAE [22] to achieve this. They take SeqV
as input and learn a vocabulary of geometric embeddings
with the VQ-VAE. After training the VQ-VAE, they then use
the VQ-VAE’s quantized features as the input for the trans-
former [23]. Very recently, [4] proposed another method to
process SeqV into a token sequence. They discard VQ-VAE
and directly use the discretized coordinates of the vertex as
the token index. It is important to emphasize that whether
or not VQ-VAE is used does not affect AMT’s effectiveness.
This is because AMT operates before the aforementioned
methods. For example, in the case of using VQ-VAE, AMT
first shortens the SeqV that representsM, and the shortened
SeqV is then quantized into an embedding sequence with
the VQ-VAE.

3.2. MeshAnything V2

In this section, we introduce MeshAnything V2. It is
equipped with AMT and scales up its maximum generated
face count from 800 to 1600. Without increasing the num-
ber of parameters, MeshAnything V2 achieves shape con-
ditioned Artist-Created Mesh (AM) generation with signifi-
cantly better performance and efficiency. We also use it as an
example to demonstrate how AMT can be applied to mesh
generation.

Following [5], MeshAnything V2 also targets generating
AMs aligned to a given shape, allowing integration with
various 3D asset production pipelines to achieve highly con-
trollable AM generation. That is, we aim to learn the dis-
tribution: p(M|S), where M represents the AM and S
represents the 3D shape condition.

As in [5], V2 uses point clouds as the shape condition
input S. We also use the same point cloud–Artist-Created

Mesh data pairs (M,S) collected in [5]. The target distri-
bution p(M|S) is learned with a decoder-only transformer
with the same size and architecture as in [5]. To inject S
into the transformer, we first encode it with a pretrained
point cloud encoder [33] into a fixed-length token sequence
TS and then set it as the prefix of the transformer’s token
sequence. We then process pairedM into mesh token se-
quence TM . It is concatenated to the point cloud token
sequence as the transformer’s ground truth sequence. After
training the transformer with cross-entropy loss, we input
TS and let the transformer autoregressively generate the cor-
responding TM , which is then detokenized intoM.

The key difference between [5] and our method is the
way we obtain TM . Instead of the naive mesh tokenization
method used in [5], we processM with the newly proposed
Adjacent Mesh Tokenization (AMT) and obtain a more com-
pact and efficient sequence SeqV . Following [4], we discard
the VQ-VAE and directly use the discretized coordinates
from SeqV as token indices. We then add a newly initialized
codebook entry to represent the & in the AMT sequence.
Finally, we sequentially combine the coordinate token se-
quence and the special token for & to obtain the mesh to-
ken sequence TM for transformer input. As mentioned in
Sec. 3.1, it is worth noting that whether or not VQ-VAE
is used does not affect the application and effectiveness of
AMT.

To facilitate the transformer’s learning of the sequence
patterns of AMT, in addition to the absolute positional en-
coding used in [5], we add the following embeddings for
Adjacent Mesh Tokenization (AMT): when representing a
face with three vertices, we add a specific embedding for
the three new vertices; when representing a face with one
vertex, we add a different embedding for the single new ver-
tex. Additionally, we provide a distinct embedding for the &
token.
Face Count Condition. Considering that some applications
require control over the approximate face count, we explored
the addition of a face count condition in mesh generation.
We initialized an embedding book with a size equal to the
maximum allowed number of faces. Based on the current
face count in the mesh, we retrieve the corresponding em-
bedding from this book and place it after the point cloud
prefix to represent the face count. During training, we add
a random variable to the face count to introduce some vari-
ation and prevent overfitting to an exact condition. During
training, we add a random variable to the face count to in-
troduce some variation and prevent overfitting to an exact
condition. Additionally, we drop this condition with a 10%
probability to further improve condition robustness.
Masking Invalid Predictions. PolyGen [15] introduces
Masking Invalid Predictions during inference. In PolyGen,
vertices are generated first, followed by faces, and both ver-
tices and faces are sorted. Without applying constraints dur-

6



Table 1. Ablation Study on AMT. We compare MeshAnything V2 with its variant without AMT. Please refer to Section 4.3 for detailed
explanation.

Method CD↓ ECD↓ NC↑ #V↓ #F↓ V Ratio↓ F Ratio↓ S Ratio↓
(×10−2) (×10−2)

V2 W/O AMT 0.895 4.832 0.924 302.4 556.7 1.105 1.062 1.000
V2 0.874 4.721 0.933 308.6 571.8 1.127 1.097 0.497

ing inference, generative models may produce results that do
not follow the sequence structure, such as generating faces
before completing all vertices or generating vertices that
violate the sorted coordinates order. PolyGen [15] addresses
this issue by masking invalid logits during the inference
phase, ensuring that only valid results are generated.

We followed this design in our PolyGen experiments. Due
to the widespread use of coordinate sorting in meshes, this
design can also be adopted in other tokenization methods.
In the AMT experiments, we incorporated this design as
well. For example, we enforced a rule in AMT where, when
starting a new strip, at least three vertices must be generated
before allowing any interruptions.

4. Experiments
4.1. Implementation Details
The main experimental setting of MeshAnything V2 remains
consistent with [5], except we equipped it with the newly
proposed Adjacent Mesh Tokenization (AMT). We still use
OPT-350M [32] as our autoregressive transformer [23] and
the pretrained point encoder from [33].

For dataset preparation, we adopt a similar dataset prepa-
ration technique as used in [5], with several modifications.
Firstly, we noticed that Objaverse contains some duplicate
mesh data, where the meshes are identical in shape but dif-
fer in texture. We detected these duplicates by calculating
the differences in vertex coordinates and retained only one
instance of each mesh. Additionally, in [5], the ground truth
meshes were first processed into SDF using mesh2sdf [24].
While mesh2sdf occasionally produces some failure cases,
we filtered out these failures using Chamfer Distance. Dif-
ferent from the dataset used in [5], we used meshes with
fewer than 1600 faces as the experimental dataset, compared
to 800 in the previous work, and also included a small por-
tion of data from ObjaverseXL. This resulted in a dataset
containing 230K point clouds and mesh pairs. We randomly
sampled 4K data samples as the evaluation dataset.

To accommodate meshes with more faces, we sampled
8192 points instead of 4096 for each point cloud. Besides,
unlike [5], we update the point encoder from [33] during
training because we find its accuracy insufficient for handling
complex meshes with up to 1600 faces.

MeshAnything V2 is trained with 32 A800 GPUs for four
days. The batch size per GPU is 8, resulting in a total batch
size of 256.

4.2. Qualitative Experiments
We present the qualitative results of MeshAnything V2. As
shown in Fig. 1, MeshAnything V2 effectively generates
high quality Artist-Created Mesh aligned to given shapes.
When integrated with various 3D assets production pipelines,
V2 successfully achieves highly contrabllable AM genera-
tion.

4.3. Quantitative Experiments
Evaluation Metrics. We follow the evaluation metric set-
tings of [5] to quantitatively assess mesh quality. We uni-
formly sample point clouds from both the ground truth
meshes and the generated meshes and compute the following
metrics on our 2K evaluation dataset:
• Chamfer Distance (CD): Evaluates the overall quality

of a reconstructed mesh by computing chamfer distance
between point clouds.

• Edge Chamfer Distance (ECD): Assesses the preserva-
tion of sharp edges by sampling points near sharp edges
and corners.

• Normal Consistency (NC): Evaluates the quality of the
surface normals.

• Number of Mesh Vertices (#V): Counts the vertices in
the mesh.

• Number of Mesh Faces (#F): Counts the faces in the
mesh.

• Vertex Ratio (V Ratio): The ratio of the estimated num-
ber of vertices to the ground truth number of vertices.

• Face Ratio (F Ratio): The ratio of the estimated number
of faces to the ground truth number of faces.

• Perplexity: We report training perplexity to measure how
well the mesh generation model predicts a sample. A lower
perplexity indicates more accurate predictions.

• Sequence Ratio (S Ratio): The sequence length compres-
sion ratio of the used mesh tokenization methods.

Ablation Study. We ablate the effectiveness of AMT by
comparing the results of MeshAnything V2 with its variant
without AMT. The variant follows exactly the same settings
as V2, except that AMT is replaced with naive mesh tok-
enization as in previous methods [4, 5, 19]. This also serves
as a fairer comparison with [5], as the original model of [5]
was trained on data with fewer than 800 faces rather than
1600. Moreover, [5] is trained on a small total batch size
of 64 while we observed a noticeable performance improve-
ment when the batch size was increased to V2’s 256. We

7



Table 2. Comparison of Tokenization Methods. We compare various mesh tokenization methods and their impact on the generated mesh
results in mesh generation. Note that the metrics are calculated by sampling 10K points cloud on each mesh.

Method CD↓ ECD↓ NC↑ #V↓ #F↓ V Ratio↓ F Ratio↓ S Ratio↓ Perplexity↓
(×10−2) (×10−2)

Baseline 2.478 18.21 0.893 95.4 178.9 0.974 0.940 1.000 1.150
Unsort 8.151 31.86 0.794 117.4 213.1 1.189 1.219 1.000 1.234
PolyGen(AMT) 3.226 22.97 0.872 93.2 172.2 0.928 0.936 0.372 1.589
AMT 2.348 19.33 0.904 102.7 187.1 1.013 0.983 0.492 1.363
AMT(Swap) 2.517 19.86 0.913 110.8 198.9 1.098 1.102 0.455 1.416

sample 100K points on each mesh to calculate the aforemen-
tioned metrics.

As shown in Table 1, our results indicate that V2 signifi-
cantly outperforms its variant, demonstrating the effective-
ness of AMT. It shows that AMT not only improves training
speed and reduces memory pressure but also enhances gen-
eration quality. Notably, although V2 and its variant were
trained for the same number of iterations, the variant con-
sumed nearly two times the GPU hours of V2. Additionally,
the table shows that AMT takes slightly more vertices and
faces. A likely reason for this is that the variant’s perfor-
mance is still too weak, and it tends to ignore details and use
a simpler topology when representing complex meshes with
high face counts. We also observe that both AMT and the
variant have vertex and face ratios greater than 1.0, meaning
they use more faces on average relative to the ground truth,
unlike the results in [5], which were less than 1 (around
0.88). We suspect this is because the dataset for V2 contains
more complex meshes with over 800 faces, which causes the
model to occasionally produce more complex topology for
simple shapes.
Comparison of Tokenization Methods. Below, we list the
methods to be compared in the following sections, along
with their specific implementation details. In the tokeniza-
tion methods comparison experiments, we use the smaller
OPT-125M [32] and select meshes with up to 400 faces from
the aforementioned datasets as the experimental dataset. We
sample 10K points on each mesh to calculate the aforemen-
tioned metrics.

• Baseline. This refers to the naive mesh tokenization
method used in previous works, where each face is strictly
represented by three vertices.

• PolyGen(AMT). This is a combination of the tokeniza-
tion method from PolyGen [15] with AMT. Polygen first
generates vertex coordinates and then expresses the faces
by generating vertex indices. We discuss this setting in
detail in the Supplementary Materials.

• AMT. This refers to the Adjacent Mesh Tokenization pro-
posed in Sec. 3.1, as shown in Figure Aug1.

• AMT(Swap). As described in Sec. 3.1, this method com-
bines the AMT algorithm with vertices swap. An addi-
tional special token is used to represent the swap operation.

• Unsort. This is based on the naive mesh tokenization
method from previous works [15, 19], but without sorting
the mesh. Instead, the mesh is used in the order in which
it is stored. It is important to note that the meshes in
Objaverse [6] are created by human, and their storage may
already include some level of inherent order. The purpose
of this method is to compare with the Baseline and verify
the importance of sorting.
The results are shown in Tab. 2. Unsort vs Baseline

comparison validates the importance of tokenization method
regularity for mesh generation.

PolyGen(AMT) [15] achieves the best S Ratio (sequence
length compression ratio), indicating its high efficiency.
However, there is a noticeable performance gap compared
to Baseline and AMT, indicating the produced mesh quality
is not high enough. The primary reason for this might be
that the autoregressive model struggles to interact accurately
with previously generated vertices when producing faces,
which increases the difficulty of sequence learning.

The results from AMT demonstrates that it shortens the
token length without compromising mesh quality, as con-
firmed by its comparison with the Baseline. Additionally, in
AMT(Swap), the introduction of the Swap special token fur-
ther increases the compression ratio without affecting mesh
quality.

From the above experiments, we can conclude that both
the regularity of the token sequence and the compression
ratio are crucial. Although PolyGen [15] achieves a better
compression ratio, its token sequence organization is not
well-suited for sequence learning, making it a sub-optimal
mesh tokenization method compared to AMT. In contrast,
both AMT and AMT(Swap) reduce the compression ratio
without increasing the difficulty of sequence learning, mak-
ing them more suitable for mesh generation.

5. Conclusion
In this work, we present MeshAnything V2, a shape-
conditioned Artist-Created Mesh (AM) generation model
that generates AM aligned to given shapes. V2 significantly
outperfroms MeshAnything [5] in both performance and effi-
ciency with our newly proposed Adjacent Mesh Tokenization
(AMT). Different from previous methods that use three ver-

8



tices to represent a face, AMT uses a single vertex whenever
possible. Our experiments demonstrate that AMT averagely
reduces the token sequence length by half. The compact,
and well-structured token sequence from AMT greatly en-
hances sequence learning, thereby significantly improving
the efficiency and performance of AM generation.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 4

[2] Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and
Matthias Nießner. Polydiff: Generating 3d polygonal meshes
with diffusion models. arXiv preprint arXiv:2312.11417,
2023. 1, 3, 4, 5

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 5

[4] Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng,
Yijun Fu, Fukun Yin, Yanru Wang, Zhibin Wang, Chi Zhang,
et al. Meshxl: Neural coordinate field for generative 3d
foundation models. arXiv preprint arXiv:2405.20853, 2024.
1, 3, 4, 5, 6, 7

[5] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen,
Jiaxiang Tang, Xin Chen, Zhongang Cai, Lei Yang, Gang Yu,
Guosheng Lin, and Chi Zhang. Meshanything: Artist-created
mesh generation with autoregressive transformers, 2024. 1, 2,
3, 4, 5, 6, 7, 8, 11

[6] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In CVPR, pages 13142–13153, 2023.
3, 5, 8

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Communi-
cations of the ACM, 63(11):139–144, 2020. 4

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 4

[9] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and Hao
Tan. Lrm: Large reconstruction model for single image to 3d.
arXiv preprint arXiv:2311.04400, 2023. 4

[10] Taku Kudo and John Richardson. Sentencepiece: A simple
and language independent subword tokenizer and detokenizer
for neural text processing. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 66–71, 2018. 1

[11] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun
Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli, Greg
Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with
sparse-view generation and large reconstruction model. arXiv
preprint arXiv:2311.06214, 2023. 4

[12] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund
Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any single
image to 3d mesh in 45 seconds without per-shape optimiza-
tion. Advances in Neural Information Processing Systems, 36,
2024. 4

[13] Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai,
Liam Paull, and Weiyang Liu. Meshdiffusion: Score-
based generative 3d mesh modeling. arXiv preprint
arXiv:2303.08133, 2023. 4

[14] Zhaoyang Lyu, Jinyi Wang, Yuwei An, Ya Zhang, Dahua Lin,
and Bo Dai. Controllable mesh generation through sparse la-
tent point diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
271–280, 2023. 4

[15] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 1, 3, 4, 5, 6, 7, 8, 11

[16] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 4

[17] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units. In
Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
1715–1725, 2016. 1

[18] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gener-
ation. arXiv preprint arXiv:2308.16512, 2023. 4

[19] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana
Tommasi, Daniele Sirigatti, Vladislav Rosov, Angela Dai, and
Matthias Nießner. Meshgpt: Generating triangle meshes with
decoder-only transformers. arXiv preprint arXiv:2311.15475,
2023. 1, 3, 4, 5, 6, 7, 8, 11

[20] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. Lgm: Large multi-view gaussian
model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024. 4

[21] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan
Huang, Adam Letts, Yangguang Li, Ding Liang, Christian
Laforte, Varun Jampani, and Yan-Pei Cao. Triposr: Fast 3d
object reconstruction from a single image. arXiv preprint
arXiv:2403.02151, 2024. 4

[22] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 3, 6

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 6, 7

[24] Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual octree
graph networks for learning adaptive volumetric shape rep-
resentations. ACM Transactions on Graphics (TOG), 41(4):
1–15, 2022. 7

[25] Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xi-
ang, Shuo Chen, Dajiang Yu, Chongxuan Li, Hang Su,

9



and Jun Zhu. Crm: Single image to 3d textured mesh
with convolutional reconstruction model. arXiv preprint
arXiv:2403.05034, 2024. 4

[26] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan,
Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, and Zex-
iang Xu. Meshlrm: Large reconstruction model for high-
quality mesh. arXiv preprint arXiv:2404.12385, 2024. 4

[27] Haohan Weng, Yikai Wang, Tong Zhang, CL Chen, and Jun
Zhu. Pivotmesh: Generic 3d mesh generation via pivot ver-
tices guidance. arXiv preprint arXiv:2405.16890, 2024. 1, 3,
4, 5

[28] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of ob-
ject shapes via 3d generative-adversarial modeling. Advances
in neural information processing systems, 29, 2016. 4

[29] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, et al. Google’s neural ma-
chine translation system: Bridging the gap between human
and machine translation. In arXiv preprint arXiv:1609.08144,
2016. 1

[30] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang,
Shenghua Gao, and Ying Shan. Instantmesh: Efficient 3d
mesh generation from a single image with sparse-view large
reconstruction models. arXiv preprint arXiv:2404.07191,
2024. 4

[31] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi
Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi Yu. Clay:
A controllable large-scale generative model for creating high-
quality 3d assets. ACM Transactions on Graphics (TOG), 43
(4):1–20, 2024. 4

[32] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068,
2022. 7, 8

[33] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang,
Pei Cheng, Bin Fu, Tao Chen, Gang Yu, and Shenghua Gao.
Michelangelo: Conditional 3d shape generation based on
shape-image-text aligned latent representation. Advances in
Neural Information Processing Systems, 36, 2024. 6, 7

[34] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 5826–5835, 2021. 4

10



A. Additional Experiments
We provide additional quantitative experiments and detailed
discussion about Polygen [15] tokenization method here.

A.1. Experiments on Face Count Condition.
We tested the effectiveness of the face count condition by
scaling the ground truth face count value by a scalar. We used
the V2 model trained on the mesh dataset with fewer than
1600 faces as the test model and sampled 10K point clouds
for each mesh to calculate the metrics. During inference,
for each ground truth mesh, we input the scaled face count
and the paired point cloud into the model and measured the
effect on face count and mesh quality. As shown in Tab. 3,
at a scale ratio of 0.8, the model significantly reduced the
face count while maintaining mesh quality. However, at a
scale ratio of 0.6, the face count did not decrease further,
indicating that while the model has some ability to follow the
face condition, it prioritizes mesh quality when the condition
becomes difficult to meet. Similarly, when the scale ratio is
set to greater than 1, the model exhibits similar behavior.

A.2. User Study.
We conducted a user study on mesh generation quality to
compare MeshAnything [5] and our works. For a fair com-
parison, we randomly sampled 30 meshes with fewer than
800 faces from the evaluation dataset and input their paired
point clouds into each model. Users were asked to select
the result they preferred from the two options. We collected
responses from a total of 43 users, and the voting rates for [5]
and MeshAnything V2 were 32.2% and 67.8%, respectively.
This indicates that the results generated by V2 are more
aligned with human preference.

A.3. Discussion on PolyGen Tokenization Method.
Polygen[15] introduces a mesh tokenization approach that
differs from other existing methods [19] for mesh generation.
It first employs an autoregressive vertex model to generate
the 3D coordinates of the mesh’s vertices. These vertices
are then used as a prefix and fed into another autoregressive
face model, which connects these vertices into faces, thus
constructing the entire mesh. Since the 3D coordinates are al-
ready provided by the vertex model, the face model does not
need to estimate the 3D coordinates, but only specifies the
connections using vertex indices, significantly reducing the
sequence length. During the face generation, this tokeniza-
tion method can be combined with AMT further shorten the
token sequence length.

By using vertex indices to represent faces, PolyGen [15]
tokenization consumes only one token to define a face,
whereas other methods require three tokens to represent
a single vertex. Assuming a vertex is referenced n times,
PolyGen’s tokenization requires 3+n tokens, whereas other
tokenization methods would require 3× n tokens. Although

Table 3. Experiments on Face Count Condition. We control the
face count condition using the scale ratio, where 1.0 indicates using
the ground truth face count as the condition. The experiments show
that our face count condition has the ability to control the number
of faces.

Scale Ratio CD↓ (×10−2) V Ratio F Ratio
1.0 1.768 1.127 1.097
0.8 1.734 0.928 0.912
0.6 1.822 0.902 0.882
1.2 1.814 1.282 1.248
1.4 1.920 1.271 1.252

PolyGen spends one additional token when a vertex is ref-
erenced only once, in most cases, each vertex is referenced
multiple times, allowing PolyGen’s approach to save se-
quence length.

Although PolyGen tokenization effectively reduces the
token sequence length, this generation method requires the
model to accurately predict vertex positions first, which may
not be ideal for an autoregressive model.

In the experiments section of our main paper, we compare
Polygen tokenization method with other methods. To make a
fair comparison, we merge the two stage generation process
of PolyGen [15] into a single model that first generates vertex
coordinates and then expresses the faces by generating vertex
indices. Besides, we combine PolyGen’s face generation
stage with AMT to further reduce the token sequence length.

B. Limitations.
Although there is a large improvement over V1, the accuracy
of MeshAnything V2 is still insufficient for industrial ap-
plications. More efforts are needed to improve the model’s
stability and accuracy.

11


	Introduction
	Related Works
	Artist-Created Mesh Generation
	3D Generation

	Method
	Adjacent Mesh Tokenization
	MeshAnything V2

	Experiments
	Implementation Details
	Qualitative Experiments
	Quantitative Experiments

	Conclusion
	Additional Experiments
	Experiments on Face Count Condition.
	User Study.
	Discussion on PolyGen Tokenization Method.

	Limitations.

